# Funktionalisierte Siliciumverbindungen mit $\omega$ -Tetramethyl- und $\omega$ -Pentamethylcyclopentadienylalkyl-Liganden: Molekulare Bausteine zur Darstellung von Metall-haltigen Polymeren \*

P. Jutzi, T. Heidemann, B. Neumann und H.G. Stammler

Fakultät für Chemie der Universität Bielefeld, Universitätststr., 33615 Bielefeld (Germany) (Eingegangen den 13. Juli 1993)

#### Abstract

Peralkylated cyclopentadiene systems of the type  $Me_5C_5(CH_2)_3Si(Me)_mY_{3-m}$ , which possess cyclopentadiene units connected with a functionalized silane fragment by an alkylidene spacer group, are prepared via two routes. As an example of the first route, the disiloxane  $[Me_5C_5(CH_2)_3Si(Me)_2]_2O(2)$  has been synthesized from the corresponding iodo compound  $[I(CH_2)_3Si(Me)_2]_2O(1)$  by reaction with Me<sub>5</sub>C<sub>5</sub>K. The trichlorosilane Me<sub>5</sub>C<sub>5</sub>(CH<sub>2</sub>)<sub>3</sub>SiCl<sub>3</sub> (4), as an example of a compound prepared via the second route, has been isolated after hydrosilylation of 1-prop-2-enyl-1,2,3,4,5-pentamethylcyclopenta-2,4-diene (3) with HSiCl<sub>3</sub>. Both synthetic methods are also suitable for the preparation of partly alkylated cyclopentadiene systems of the type  $Me_4HC_5(CH_2)_nSi(Me)_mY_{3-m}$ . Thus the  $\omega$ -iodoalkyltriethoxysilanes I(CH<sub>2</sub>)<sub>n</sub>Si(OEt)<sub>3</sub> (n = 1, 2, 3) react with Me<sub>4</sub>HC<sub>5</sub>K to give the corresponding  $\omega$ -(tetramethylcyclopentadienyl)alkyl-triethoxysilanes 5-7. Compounds 5-7 consist of a mixture of isomers; the ratio between isomers having an allylic or vinylic hydrogen atom at the cyclopentadiene ring depends on the spacer length. Isomeric mixtures of the 4-(tetramethylcyclopentadienyl)butyl-silanes of the type  $Me_4HC_5(CH_2)_4Si(Me)_mCl_{3-m}$  (m = 1, 2, 3) (8-10) with an allylic hydrogen atom at the cyclopentadiene ring have been prepared by hydrosilylation of 1-but-3-enyl-2,3,4,5-tetramethylcyclopentadiene. The silane fragment in the alkylated cyclopentadiene systems 2 and 4-10 can be modified further. As examples hydrolysis, alcoholysis, reductive coupling, heterogenisation and polycondensation reactions are described. Following theses procedures the corresponding silanol 12 and disiloxane 13 have been prepared as well as the alkoxysilanes 14-17, the disilane 18 and the functionalized silicagels 19 and 20. Compounds 2, 4-10 and 12-20 serve as a "pool" for the preparation of transition metal complexes. The dicarbonyl cobalt compound 21 has been synthesized by reaction of 8 with  $Co_2(CO)_8$ . Reaction of 16 with K and FeCl<sub>2</sub> gives the corresponding ferrocene derivative 22. The  $\eta^4$ -bound Pt(II)- and Pd(II)-complexes 23-27 have been prepared by reaction of the functionalized Si-O-compounds 2, 13, and 19-20 with [PtCl<sub>2</sub>(Ethylen)]<sub>2</sub> and PdCl<sub>2</sub>(PhCN)<sub>2</sub>, respectively.

#### Zusammenfassung

Peralkylierte Cyclopentadien-Systeme des Typs  $Me_5C_5(CH_2)_5Si(Me)_mY_{3-m}$ , die über eine Alkyliden-Spacergruppe mit einer funktionalisierten Silan-Einheit verknüpft sind, sind auf zwei verschiedenen Wegen synthetisiert worden. Als Beispiel für den ersten Weg wird die Synthese des Disiloxans  $[Me_5C_5(CH_2)_3Si(Me)_2]_2O(2)$  beschrieben, welches ausgehend von der Iodverbindung  $[I(CH_2)_3Si(Me)_2]_2O(1)$  durch Umsetzung mit  $Me_5C_5K$  dargestellt werden kann. Das Trichlorsilan  $Me_5C_5(CH_2)_3Si(14)$ , als Synthesebeispiel für den zweiten Weg, ist über Hydrosilylierung von 1-Prop-2-enyl-1,2,3,4,5-pentamethylcyclopenta-2,4-dien (3) zugänglich. Beide Synthesewege sind auch zur Darstellung der teilweilse alkylierten Cyclopentadiensysteme des Typs  $Me_4HC_5(CH_2)_3Si(Me)_mY_{3-m}$  geeignet. So führen die Umsetzungen der  $\omega$ -Iodalkyl-triethoxysilane  $I(CH_2)_nSi(OEt)_3$  (n = 1, 2, 3) mit  $Me_4HC_5K$  zu den entsprechenden  $\omega$ -(Tetramethylcyclopentadienyl)alkyl-triethoxysilanen 5-7. Verbindungen 5-7 liegen als Isomerengemische vor; das Verhältnis zwischen den Isomeren, die ein allylständiges oder ein vinylständiges Wasserstoffatom am Cyclopentadienring aufweisen, ist abhängig von der Spacerlänge. Isomerengemische der 4-(Tetramethylcyclopentadienyl)butyl-silane des Typs  $Me_4HC_5(CH_2)_4Si(Me)_mCl_{3-m}$  (m = 1, 2, 3) (8-10) mit ausschließlich allylständigem Wasserstoffatom am Cyclopentadienring können durch Hydrosilylierung von 1-But-3-enyl-2,3,4,5-tetramethylcyclopentadien dargestellt werden. Die am Siliciumatom funktionalisierten Verbindungen 2 und 4-10 können weiter derivatisiert werden. An ausgewählten Beispielen wird die Hydrolyse, die Alkoholyse, die reduktive Kupplung, die Heterogenisierung und die Polykondensationsreaktion näher untersucht. So erhält man das Silanol 12 und das Disiloxan 13, die Alkoxysilane 14-17, das Disilan 18 und die funktionalisierten Kieselgele 19-20.

Correspondence to: Professor Dr. P. Jutzi.

<sup>\*</sup> Herrn Professor Dr. H. Werner zum 60. Geburtstag gewidmet.

Verbindungen 2, 4–10 und 12–20 dienen als "Pool" zur Darstellung von Übergangsmetall-Derivaten. Beispielsweise wird die Dicarbonyl-Cobalt-Verbindung 21 durch Umsetzung von 8 mit  $Co_2(CO)_8$  gebildet. Reaktion von 16 mit K und FeCl<sub>2</sub> liefert das Ferrocen-Derivat 22. Die  $\eta^4$ -gebundenen Pt(II)- und Pd(II)-Komplexe 23–27 können durch Umsetzung der funktionalisierten Si-O-Verbindungen 2, 13, und 19–20 mit [PtCl<sub>2</sub>(Ethylen)]<sub>2</sub> oder PdCl<sub>2</sub>(PhCN)<sub>2</sub> erhalten werden.

Key words: Silicon; Iron; Cobalt; Palladium; Platinum; Cyclopentadienyl

#### 1. Einleitung

Siliciumverbindungen des Typs  $X(CH_2)_nSi(Me)_m$   $Y_{3-m}$  mit einer nukleofugen Abgangsgruppe Y am Siliciumatom und einem zusätzlichen reaktiven Zentrum X, welches über eine Alkyliden-Spacereinheit  $(CH_2)_n$  (n = 1, 2, 3) mit dem Silanfragment verbunden ist, stellen interessante difunktionelle Moleküle dar. Das Silanfragment Si(Me)\_mY\_{3-m} (Y = Hal, OR, NR<sub>2</sub>) ermöglicht den Einstieg in die Silicon-, die Silicat- oder die Polysilan-Chemie. Die zweite Funktionalität X (X = Hal, CN, PR<sub>2</sub>, NR<sub>2</sub>, ...) erlaubt interessante Derivatisierungen.

Das 3-Chlorpropyl-trimethoxysilan  $Cl(CH_2)_3Si-(OMe)_3$  ist ein Vertreter aus dieser Substanzklasse (X = Cl, Y = OMe). Derivate dieses Silans werden industriell eingesetzt, vor allem um Verbundmaterialien herzustellen, welche organische Polymere mit anorganischen Oberflächen verknüpfen [1].

Siliciumverbindungen, die über die Funktionalität X Metall-substituiert sind, sind bereits bekannt; ihr Einsatzgebiet läßt sich unter dem Stichwort "trägerfixierte Organometallverbindungen" zusammenfassen. Hierunter fallen Anwendungen wie die Immobilisierung von Homogenkatalysatoren auf Kieselgel- oder Polysiloxan-Basis [2], das Maßschneidern von SiO<sub>2</sub>-Derivaten für die Redox-Katalyse [3] sowie die Erzeugung von Nanostrukturen durch Sol-Gel-Prozesse [4]. Darüberhinaus sind diese molekularen Bausteine interessante Ausgangsstoffe zur Synthese von Modellsubstanzen für die Grundlagenforschung auf dem Gebiet der Oberflächenchemie [5]: Durch Umsetzung mit Silicon-Dendrimeren [6] sind funktionalisierte Oligo- bzw. Polysiloxane mit definierter Molmasse und Struktur erhältlich; Derivatisierung von Oligosilsesquioxanen [7] führt zu funktionalisierten SiO<sub>2</sub>-Derivaten, mit denen sich die Oberflächenmorphologien von SiO2-Trägermaterialien auf molekularer Ebene modellieren lassen.

Wir interessieren uns besonders für Cyclopentadien-funktionalisierte Siliciumverbindungen, da die Dien-Einheit des Cyclopentadien-Fragmentes oder nach Deprotonierung die Cyclopentadienyl-Einheit die Anbindung von Übergangsmetall-Komplexen äußerst vielfältiger Art ermöglicht.

3-Cyclopentadienylpropyl-trimethoxysilan ist handelsüblich; es kann in einer Zwei-StufenReaktion aus 3-Chlorpropyl-trimethoxysilan hergestellt werden [8,9]. Potentielle Anwendungsmöglichkeiten einiger Übergangsmetall-Komplexe von 3-Cyclopentadienylpropyltrimethoxysilan sind bereits an einigen Beispielen untersucht worden [9,10]. Ganz allgemein besitzen  $\omega$ -Cyclopentadienylalkylsilane einige unerwünschte Eigenschaften. Das Cyclopentadien-Fragment ist extrem thermolabil und auch säureempfindlich. Des weiteren sind entsprechende Übergangsmetall-Komplexe manchmal nicht sonderlich stabil; beispielsweise sind  $\eta^4$ -C<sub>5</sub>H<sub>6</sub>-Komplexe des zweiwertigen Platins unbekannt, während entsprechende Verbindungen des permethylierten Cyclopentadiensystems C<sub>5</sub>Me<sub>5</sub>H-(Cp<sup>\*</sup>H) in der Literatur beschrieben sind [11]. Mehrfach-methylierte Cyclopentadien-Systeme, welche über einen Spacer an ein funktionalisiertes Silan-Fragment gebunden sind, sind unseres Wissens noch nicht bekannt. Wir beschreiben im folgenden Synthesen und Derivatisierungen von vier- bzw. fünffach methvlierten  $\omega$ -Cyclopentadienylalkyl-silanen.

#### 2. Ergebnisse und Diskussion

#### 2.1. Synthese der Titelverbindungen

Es soll zunächst zwischen zwei Zielsystemen unterschieden werden: (I) permethylierte Cyclopentadien-Verbindungen des Typs  $Me_5C_5(CH_2)_nSi(Me)_mY_{3-m}$ zur Darstellung von Dien-Komplexen sowie (II) vierfach methylierte Cyclopentadien-Systeme des Typs  $Me_4HC_5(CH_2)_nSi(Me)_mY_{3-m}$ , welche noch ein allylständiges Wasserstoffatom am Cyclopentadienring aufweisen, zur Darstellung von  $\eta^5$ -Cyclopentadienyl-Komplexen.

# 2.1.1. Silane des Typs $Me_5C_5(CH_2)_nSi(Me)_mY_{3-n}$

Permethylierte Cp-Systeme des Typs  $Me_5C_5(CH_2)_3$ -Si(Me)<sub>m</sub>Y<sub>3-m</sub> lassen sich auf zwei verschiedenen Wegen darstellen, wie am Beispiel der Synthesen von 2 und 4 gezeigt wird. Bei der ersten Variante (A) geht man von funktionalisierten Silanen des Typs  $Cl(CH_2)_n$ -Si(Me)<sub>m</sub>Cl<sub>3-m</sub> aus. Das pentamethylcyclopentadienylalkyl-substituierte Disiloxan 2 ist in einer Drei-Stufenreaktion aus  $Cl(CH_2)_3Si(Me)_2Cl$  zugänglich (Gl. (1)). Der erste Schritt, die Hydrolyse, führt zum Bis(3chlorpropyl)tetramethyl-disiloxan, welches mittels Finkelstein-Reaktion zur Iodverbindung 1 umhalogeniert



wird. Im dritten Schritt wird 1 mit Cp<sup>\*</sup>K zu 2 umgesetzt. Verbindung 2 kann als farblose Flüssigkeit in 73%. Ausbeute isoliert werden. Der Hydrolyseschritt ist notwendig, da die direkte Umsetzung von  $Cl(CH_2)_3Si(Me)_2Cl$  mit Cp<sup>\*</sup>K zu Substitutionsreaktionen am Silan-Fragment führen würde; der zweite Schritt liefert ein Substrat mit einer besseren Abgangsgruppe an der Propyliden-Einheit.

Bei der zweiten Variante (B) geht man von Cp<sup>\*</sup>H aus (Gl. (2)). Deprotonierung mit KH und anschließende Umsetzung mit Allylbromid liefert das allyl-substituierte Pentamethylcyclopentadien 3 in 80%. Ausbeute. Verbindung 3 bietet sich als Substrat zur regioselektiven Hydrosilylierung an. So liefert beispielsweise die Umsetzung von 3 mit  $HSiCl_3$  in 80%. Ausbeute das Trichlorsilan 4 als luft- und feuchtigkeitsempfindlichen farblosen Feststoff.



Variante B hat den Vorteil, daß bei Bedarf funktionalisierte Halogensilane dargestellt werden können; Variante A kann nur zur Darstellung funktionalisierter Si-O-Verbindungen verwendet werden. Dafür ist Variante A bezüglich der Alkyliden-Spacereinheit in größerem Maße variabel (funktionalisierte Silane mit n = 1 oder 2 sind problemlos über Variante A zugänglich, nicht aber über Variante B).

#### 2.1.2. Silane des Typs $Me_4HC_5(CH_2)_nSi(Me)_mY_{3-m}$

Die unter 2.1.1. aufgeführten Substitutionsverfahren sind prinzipiell auch für die Darstellung der Silane des Typs  $Me_4HC_5(CH_2)_nSi(Me)_mY_{3-m}$  geeignet. So liefern die Umsetzungen von Silanen des Typs  $I(CH_2)_nSi-(OEt)_3$  (n = 1, 2, 3) mit  $Me_4HC_5K$  (TcpK) problemlos die entsprechenden Substitutionsprodukte 5-7, welche als farblose Flüssigkeiten in 70-80%. Ausbeute isoliert werden können (Gl. (3)). Im Gegensatz zu

| I(CH2)nSI(OEt)3 | Me4HC5(CH2)nSI(OEt)3 | (3) |
|-----------------|----------------------|-----|
|                 | 5-7                  |     |

Tabelle 1 Isomerenverteilung in 5-7 in Abhängigkeit von der Spacerlänge

den  $\omega$ -(Pentamethylcyclopentadienyl)alkyl-silanen liegen die tetramethylcyclopentadienylalkyl-substituierten Silane 5-7 als Isomerengemische vor (Tabelle 1). Während bei 5 aufgrund sterischer Einflüsse des Silanfragmentes durch die kurze Spacereinheit nur die erwünschten Isomere des Typs (a)-(c) mit allylständigem Wasserstoffatom am Cp-Ring beobachtet werden, liegen in den Verbindungen 6 und 7 auch oder sogar überwiegend die unerwünschten Isomere des Typs (d) und (e) vor. Diese werden gebildet, da der sterische Einfluß des Silanfragmentes mit wachsender Spacerlänge abnimmt, so daß geminal zu einer Methyl-Gruppe am Cyclopentadienring eine Substitutionsreaktion möglich wird. Bei sterisch anspruchsvollen Fragmenten wird nur eine Reaktion geminal zu einem Wasserstoffatom am Cyclopentadiensystem beobachtet. Die erstgenannte Reaktion führt zu Isomeren mit vinvlständigem, die letztere zu Isomeren mit allylständigem Wasserstoffatom am Cyclopentadienring.

 $\omega$ -(Tetramethylcyclopentadienyl)alkyl-silane mit allylständigem Wasserstoffatom und mit einer längeren Spacerkette (n = 4) lassen sich in sehr guten Ausbeuten aus 1-But-3-enyl-2,3,4,5-tetramethylcyclopentadien [12] durch Umsetzung mit Hydridosilanen darstellen. Die Hydrosilylierung verläuft regioselektiv und führt nahezu quantitativ zu den entsprechenden 4-(Tetramethylcyclopentadienyl)butyl-silanen **8-10**, welche in Form farbloser, hydrolyseempfindlicher Flüssigkeiten als statistisches Gemisch der drei möglichen Isomere anfallen (Gl. (4)).

$$Me_{4}HC_{5}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{$$

Die entsprechenden Umsetzungen mit 1-Prop-2enyl-2,3,4,5-tetramethylcyclopentadien 11 führen dagegen nicht zu den gewünschten Hydrosilylierungsprodukten. Verbindung 11 fällt bei der Synthese zusammen mit dem isomeren Cyclopenten-Derivat ( $H_2Me_4$ - $C_5$ )=CH-CH=CH<sub>2</sub> an [13], von welchem es nach

| Verb. | R =                                                  | R      | RH   | R H |          | •   |   |
|-------|------------------------------------------------------|--------|------|-----|----------|-----|---|
|       |                                                      | 11 (a) | (b)  | (c) | п<br>(d) | (e) | • |
| 5     | CH <sub>2</sub> Si(OEt) <sub>3</sub>                 | ·      | 100% |     |          |     |   |
| 6     | (CH <sub>2</sub> ) <sub>2</sub> Si(OEt) <sub>3</sub> | · ·    | 50%  | 50% |          |     |   |
| 7     | $(CH_2)_3$ Si $(OEt)_3$                              |        | 40%  | 60% |          |     |   |

$$\frac{dHCO_3}{0\pi} \longrightarrow (CH_2)_4 S(Me)_2 OH \qquad (5)$$
12
85% at accord 471.00

$$\begin{array}{c} (a) \\ (b) \\ (CH_2)_{m}SI(We)_{n}CG_{2-n} \\ (cH_2)_{4}SI(We)_{2} \\ (cH_2)_{4}SI(We)_{n}CG_{2-n} \\ (cH_2)_{4}SI(We)_{n}(CR^{2})_{3-n} \\ (cH_2)_{7}SI(We)_{n}(CR^{2})_{3-n} \\ (cH_2)_{7}SI(We)_{1}(CR^{2})_{3-n} \\ (cH_2)_{7}SI(We)_$$

Uberführung in das entsprechende Lithium-Salz abgetrennt werden kann. Anschließende Hydrolyse liefert reines 11 als farblose Flüssigkeit als Gemisch der drei möglichen Isomere in 39%. Ausbeute. Eine Hydrosilylierung der Propenyl-Seitenkette von 11 ist aber nicht möglich: Durch die sauren Bedingungen der Hydrosilylierungsreaktion reagiert 11 teilweise zu dem entsprechenden Cyclopenten-Derivat ( $H_2Me_4C_5$ )=CH-CH=CH<sub>2</sub> zurück. Dieses kann nicht regioselektiv ein Hydridosilan addieren [14\*].

#### 2.2. Derivatisierungen am Silicium-Atom

Die alkylierten  $\omega$ -Cyclopentadienylalkyl-silane 2 und 4-10 können vor einer Umsetzung zu Übergangsmetall-Komplexen am Silicium-Atom derivatisiert werden. An ausgewählten Beispielen wurde die Hydrolyse [15], die Alkoholyse [16], die reduktive Kupplung [17] sowie die Heterogenisierung an OH-Oberflächen [18] und die Polykondensation im Sol-Gel-Verfahren [19] untersucht. Die Gln. (5)-(10) zeigen die durchgeführten



Umsetzungen (der Übersichtlichkeit halber wird jeweils nur eines der möglichen Isomere angegeben).

Hydrolyse von 8 unter neutralen Bedingungen führt zur Bildung des thermostabilen Silanols 12, welches nach Destillation in 70%. Ausbeute als farblose Flüssigkeit erhalten wird. Dieses Silanol, wie auch 8 direkt, kann unter sauren Bedingungen glatt zum entsprechenden Disiloxan 13 kondensiert werden, welches praktisch quantitativ als hellgelbes Öl isoliert werden kann (Gl. (5)–(6)).

Alkoholyse von 4 bzw. 8–10 in Anwesenheit stöchiometrischer Mengen Pyridin führt nahezu quantitativ zu den entsprechenden Alkoxysilanen 14–17, welche nach Destillation als farblose Flüssigkeiten isoliert werden können (Gl. (7)).

Reduktion von 8 mit Li-Sand in THF führt überwiegend zur Bildung des entsprechenden Disilans 18. Verbindung 18 kann nach chromatographischer Reinigung als farbloses Öl in 50%. Ausbeute isoliert werden (Gl. (8)).

Durch Rühren einer Suspension aus 4, Hexan,  $H_2O$ und aktiviertem Kieselgel wird 4 auf einer Kieselgel-Oberfläche verankert. Die Reaktion verläuft quantitativ, da ein anschließendes mehrstündiges Extrahieren mit  $CH_2Cl_2$  zu keiner Auswaschung führt. Das so funktionalisierte Kieselgel 19 liegt als hellrotes Pulver vor und weist einen Cp<sup>\*</sup>-Gehalt von 0.16 mmol pro Gramm Kieselgel auf (berechnet aus den Einwaagen) (Gl. (9)).

Die Copolykondensation von 17 mit Si(OMe)<sub>4</sub> im Verhältnis 1:140 in Aceton unter Zusatz von  $H_3PO_4$ führt nach Aufarbeitung zu einem Kieselgel-artigen violetten Pulver 20. Da neben dem unlöslichen 20 keine löslichen Nebenprodukte isoliert werden können, kann auch hier der Cp\*-Gehalt aus den Einwaagen berechnet werden: 20 weist einen Cp\*-Gehalt von 0.11 mmol pro Gramm Kieselgel auf (Gl. (10)).

#### 2.3. Ubergangsmetall-Komplexe

Die Verbindungen 2, 4–10 und 12–20 dienen als "Pool" zur Darstellung von Übergangsmetall-Derivaten. Für derartige Umsetzungen kann daher immer ein Ligandensystem mit den "passenden" Eigenschaften verwendet werden. Dies soll an einigen Beispielen gezeigt werden.

Das Dicarbonyl–Cobalt-Derivat **21** kann durch Umsetzung von **8** mit  $\text{Co}_2(\text{CO})_8$  in 70%. Ausbeute in Form brauner, extrem luft- und feuchtigkeitsempfindlicher Kristalle dargestellt werden (Gl. (11)). Der Komplex **21** 

$$Me_4HC_5(CH_2)_4Si(Me)_2CI \xrightarrow{Co_2(CO)_8} 70X (11)$$

weist IR-Absorptionen von 1950 cm<sup>-1</sup> und 2010 cm<sup>-1</sup> für die  $\nu_{CO}$ -Schwingungen auf; diese stimmen mit denen im Cp\*Co(CO)<sub>2</sub> praktisch überein [20]. Eine Röntgenstrukturanalyse von 21 zeigt, daß die Bindungsverhältnisse im Me<sub>4</sub>C<sub>5</sub>Co(CO)<sub>2</sub>-Fragment weitgehend analog denen im Cp\*Co(CO)<sub>2</sub> [20] sind.

<sup>\*</sup> Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.



Abb. 1. Struktur von 21 [21\*]. Wichtige Abstände [Å] und Winkel [°]: Co1-C1 2.095(7), Co1-C2 2.090(7), Co1-C3 2.085(7), Co1-C4 2.103(9) Co1-C5 2.049(10), Co1-C11 1.696(9), Co1-C10 1.742(11), C11-C01-C10 95.2(4), C2-Co1-C3 40.7(3), C1-Co1-C4 68.2(3).

Darüberhinaus erkennt man sehr schön, wie die  $(CH_2)_4$ -Spacereinheit das Metallzentrum [Me<sub>4</sub>C<sub>5</sub>Co- $(CO)_2$ ] von dem Silanfragment (Me<sub>2</sub>SiCl) trennt (Abb. 1).

Die Reaktion von 16 mit Kalium in DME führt zur Bildung des Kalium-Salzes von 16, welches mit  $\text{FeCl}_2$ zum Ferrocen-Derivat 22 abreagiert. Der Komplex 22 kann nach chromatographischer Abtrennung von nicht umgesetztem Edukt als oranges Öl in 55%. Ausbeute (bzgl. des umgesetzten Liganden) erhalten werden (Gl. (12)).



Die Umsetzungen von 2 und 13 mit  $[PtCl_2(Ethylen)]_2$ führen zur Bildung der entsprechenden  $\eta^4$ -PtCl<sub>2</sub>-Komplexe 23 und 24. Die Verbindungen 23 und 24 können mittels Fällung aus einer CH<sub>2</sub>Cl<sub>2</sub>-Lösung durch Zugabe von Et<sub>2</sub>O nahezu quantitativ als gelbe Feststoffe erhalten werden. Analog hierzu liefert die Reaktion von 2 mit PdCl<sub>2</sub>(PhCN)<sub>2</sub> den ensprechenden  $\eta^4$ -PdCl<sub>2</sub>-Komplex 25 als orangen Feststoff. (Gln. (13)– (15)).



Das  $\eta^4$ -gebundene MCl<sub>2</sub>-Fragment kann prinzipiell endo- oder exo-ständig zur allylständigen Methylgruppe vorliegen. Beim  $\eta^4$ -Pt-Komplex Cl<sub>2</sub>PtCp\*CH<sub>2</sub>-CH<sub>3</sub> [11] wird aufgrund eines starken Tieffeld-Shifts der <sup>1</sup>H-NMR-Resonanz der allyständigen Methylgruppe am Cyclopentadienring im Vergleich zum freien Liganden Cp\*CH<sub>2</sub>CH<sub>3</sub> angenommen, daß es sich ausschließlich um das Isomer mit endo-ständiger Methylgruppe und exo-ständiger Ethylgruppe handelt. Für Verbindungen 24 und 25 kann analog das Vorliegen einer endo-ständigen Methylgruppe vermutet werden, da die <sup>1</sup>H-NMR-Resonanz der allvlständigen Methylgruppe mit  $\delta = 1.70$  bzw.  $\delta = 1.96$  gegenüber  $\delta = 0.82$ im Edukt 2 stark tieffeldverschoben ist. Die-thermodynamisch ungünstigeren Isomere mit exo-ständiger Methylgruppe und endo-ständigem Alkylsiloxan-Rest werden nicht beobachtet.

Umsetzungen der funktionalisierten Kieselgele 19 und 20 mit [PtCl<sub>2</sub>(Ethylen)]<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub> führen glatt zur Bildung der Pt-funktionalisierten Kieselgele 26 und 27. Das PtCl<sub>2</sub>-Fragment läßt sich durch mehrstündiges Extrahieren mit CH<sub>2</sub>Cl<sub>2</sub> nicht entfernen. Ein Blindversuch, bei dem versucht wird, das PtCl<sub>2</sub>-Fragment auf nicht funktionalisiertem Kieselgel zu verankern (durch Rühren einer Suspension aus [PtCl<sub>2</sub>(Ethylen)]<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> und aktiviertem Kieselgel), führt zu keiner Umsetzung. Man kann daher annehmen, daß das PtCl<sub>2</sub>-Fragment analog den molekularen Verbindungen  $\eta^4$  an das Cp<sup>\*</sup>-Fragment gebunden ist. Die so funktionalisierten Kieselgele weisen einen Pt-Gehalt von 0.12 mmol (26) bzw. von 0.07 mmol (27) pro Gramm Kieselgel auf (berechnet aus den Einwaagen) (Gl. (16)).



Über Anwendungen dieser und anderer Metallfunktionalisierter Silane sowie ihrer Derivate werden wir an anderer Stelle berichten.

#### 3. Experimenteller Teil

Sämtliche Arbeiten wurden, wenn nicht anders beschrieben, unter Ausschluß von Luft und Feuchtigkeit unter Argon durchgeführt; verwendete Geräte, Chemikalien und Lösungsmittel waren entsprechend vorbereitet. Schmelzpunkte: Büchi 510. <sup>1</sup>H-NMR-Spektren: Bruker AM 300 (300 MHz), ext. TMS. <sup>13</sup>C{<sup>1</sup>H}-NMR-Spektren: Bruker AM 300 (75 MHz), ext. TMS. <sup>29</sup>Si{<sup>1</sup>H}-NMR-Spektren: Bruker AM 300 (59.6 MHz), ext. TMS. Massenspektren: Varian 311 A (70 eV, 300  $\mu$ A Emission); es sind nur die charakteristischen Fragmente angegeben. IR-Spektren: PerkinElmer-598-IR-Spektrometer. CHN-Analysen: Perkin-Elmer-240-Elementaranalysator des Mikroanalytischen Labors der Fakultät für Chemie, Universität Bielefeld. Cl-Bestimmung nach Schöniger. Folgende Chemikalien wurden nach Literaturvorschriften hergestellt: Bis(3chlorpropyl)tetramethyldisiloxan [22]. Isomerengemisch aus Me<sub>4</sub>HC<sub>5</sub>CH<sub>2</sub>CH=CH<sub>2</sub> und (Me<sub>4</sub>H<sub>2</sub>C<sub>5</sub>)=CH-CH =CH<sub>2</sub> [13], Bis(dichlor-ethylen-platin) [23], Bis(benzonitril)palladiumdichlorid [24]. Alle anderen verwendeten Chemikalien waren entweder kommerziell erhältlich oder standen im Arbeitskreis zur Verfügung.

#### 3.1. Bis(3-iodpropyl)tetramethyldisiloxan (1)

33.0 g (220 mmol) NaI werden in 200 ml Aceton gelöst. Nach Zutropfen von 28.7 g (100 mmol) Bis(3chlorpropyl)tetramethyldisiloxan wird 48 h unter Ausschluß von Licht unter Rückfluß erhitzt. Das Aceton wird *i. Vak.* entfernt und der Rückstand mit 200 ml Et<sub>2</sub>O extrahiert. Nach Entfernen des Diethylethers *i.* Vak. wird der Rückstand destilliert. Man erhält 42.3 g 1 (90%) als gelbe Flüssigkeit; Sdp.<sub>0.01</sub> 92–94°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.04 (s, 3H, CH<sub>3</sub>Si); 0.59 (m, 2H, CH<sub>2</sub>Si); 1.80 (m, 2H, CH<sub>2</sub>); 3.16 (t, <sup>3</sup>J<sub>HH</sub> = 7.2 Hz, 2H, CH<sub>2</sub>I). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.3 (CH<sub>3</sub>Si); 11.1 (CH<sub>2</sub>I); 20.1 (CH<sub>2</sub>Si); 28.1 (CH<sub>2</sub>). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  6.9.

Anal. Gef.: C, 25.70; H, 5.11.;  $C_{10}H_{24}I_2OSi_2$  (470.3) ber.: C, 25.54; H, 5.14%.

# 3.2. Bis[3-(1,2,3,4,5-pentamethylcyclopenta-2,4-dienyl)propyl]tetramethyldisiloxan (2)

Zu 6.10 g (35.0 mmol) Cp<sup>\*</sup>K (hergestellt aus Cp<sup>\*</sup>H und KH in THF) in 150 ml THF werden 7.50 g (15.9 mmol) 1 getropft. Nach Rühren über Nacht wird das Lösungsmittel *i. Vak.* entfernt und der Rückstand mit 200 ml Hexan extrahiert. Einengen und Kristallisation bei  $-80^{\circ}$ C liefert 6.97 g 2 (90%) in Form farbloser Kristalle; Schmp. 59°C.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  -0.11 (s, 6H, CH<sub>3</sub>Si); 0.29 (m, 2H, CH<sub>2</sub>Si); 0.55 (m, 2H, CH<sub>2</sub>); 0.82 (s, 3H, allyl. CH<sub>3</sub> v. Cp<sup>\*</sup>); 1.36 (m, 2H, CH<sub>2</sub>Cp<sup>\*</sup>); 1.63, 1.72 (2s, 12H, vinyl. CH<sub>3</sub> v. Cp<sup>\*</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.3 (CH<sub>3</sub>Si); 9.7, 10.9 (vinyl. CH<sub>3</sub> v. Cp<sup>\*</sup>); 17.3 (CH<sub>2</sub>Si); 18.9 (CH<sub>2</sub>); 22.2 (allyl. CH<sub>3</sub> v. Cp<sup>\*</sup>); 39.4 (CH<sub>2</sub>Cp<sup>\*</sup>); 56.0 (C-); 133.4, 140.1 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  6.9. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 486 (45); M<sup>+</sup>-Cp<sup>\*</sup>H 350 (17); M<sup>+</sup>-Cp<sup>\*</sup>(CH<sub>2</sub>)<sub>3</sub> 309 (29); Cp<sup>\*</sup>(CH<sub>2</sub>)<sup>+</sup> 149 (65); Cp<sup>\*</sup>H<sup>+</sup> 136 (100); HSi(Me)<sub>2</sub>OSi(Me)<sub>2</sub><sup>+</sup> 133 (72).

Anal. Gef.: C, 74.01; H, 11.29.  $C_{30}H_{54}OSi_2$  (486.9) ber.: C, 74.00; H, 11.18%.

# 3.3. 1-(Prop-2-enyl)-1,2,3,4,5-pentamethylcyclopenta-2,4-dien (3)

Zu 12.2 g (70.0 mmol) Cp\*K (hergestellt aus Cp\*H und KH in THF) in 250 ml THF werden 9.32 g (77.0

mmol) Allylbromid getropft. Man rührt 2 d bei RT und entfernt das THF im Wasserstrahlvakuum. Nach Extraktion des Rückstandes mit Hexan wird das Lösungsmittel *i. Vak.* entfernt und der Rückstand destilliert. Man erhält 9.87 g 3 (80%) als hellgelbe Flüssigkeit; Sdp.<sub>10</sub> 65°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.89, 1.70, 1.76 (3s, 15H, CH<sub>3</sub> v. Cp<sup>\*</sup>); 2.16 (m, 2H, CH<sub>2</sub>); 4.71 (m, 1H, CH=); 4.82–5.02 (m, 2H, CH<sub>2</sub>=). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  9.7, 10.9, 21.4 (CH<sub>3</sub> v. Cp<sup>\*</sup>); 39.3 (CH<sub>2</sub>); 55.5 (C–); 114.4 (CH=); 133.9, 139.8 (C=); 135.4 (CH<sub>2</sub>=). MS [m/e (rel.Int. %)]: M<sup>+</sup> 176 (66); M<sup>+</sup> – CH<sub>3</sub> 161 (30); Cp<sup>\*+</sup> 135 (100).

Anal. Gef.: C, 88.46; H, 11.22. C<sub>13</sub>H<sub>20</sub> (176.3) ber.: C, 88.57; H, 11.43%.

#### 3.4. 3-(1,2,3,4,5-Pentamethylcyclopenta-2,4-dienyl)propyl-trichlorsilan (4)

9.00 g (51.0 mmol) 3, 8.12 g (60.0 mmol) Trichlorsilan und 0.05 ml einer 0.1 N-Lösung von  $H_2PtCl_6$  in 2-Propanol werden 48 h auf 55°C erwärmt. Nach Entfernung des überschüssigen Silans *i. Vak.* wird der Rückstand aus Hexan kristallisiert. Man erhält 4 als farblosen, stark luft- und feuchtigkeitsempfindlichen Feststoff. Ausbeute: 12.7 g (80%); Schmp.: 60°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.85, 1.65, 1.75 (3s, 15H, CH<sub>3</sub> v. Cp<sup>\*</sup>); 0.87 (m, 2H, CH<sub>2</sub>Si); 1.25 (m, 2H, CH<sub>2</sub>); 1.48 (m, 2H, CH<sub>2</sub>Cp<sup>\*</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  9.7, 10.9, 22.1 (CH<sub>3</sub> v. Cp<sup>\*</sup>); 16.8, 24.7, 37.3 (CH<sub>2</sub>); 55.8 (C-); 134.2, 139.5 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  12.9. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 310 (65); Cp<sup>\*</sup>CH<sub>2</sub><sup>+</sup> 149 (100); Cp<sup>\*</sup>H<sup>+</sup> 136 (60).

Anal. Gef.: C, 50.34; H, 6.79; Cl, 33.8.  $C_{13}H_{21}Cl_3Si$  (311.8) ber.: C, 50.08; H, 6.79; Cl, 34.12%.

# 3.5. Allgemeine Arbeitsvorschrift: $\omega$ -(Tetramethylcyclopentadienyl)alkyl-triethoxysilane (5–7)

Zu einer Lösung von 0.10 mol Alkoxy(iodalkyl)silan in 200 ml THF werden bei 20°C 400 ml einer 0.25 molaren Lösung von  $Me_4HC_5K$  in THF getropft und 48 h gerührt. Das Lösungsmittel wird im Wasserstrahlvakuum entfernt und der Rückstand in Petrolether aufgenommen. Nach Filtration wird die organische Phase mit einem Phosphatpuffer pH 7.0 (0.10 mol  $KH_2PO_4/0.10$  mol  $Na_2HPO_4$  in 500 ml  $H_2O$ ) neutralisiert. Man extrahiert die wäßrige Phase mit Et<sub>2</sub>O und trocknet die vereinigten organischen Phasen über MgSO<sub>4</sub>. Die Lösungsmittel werden im Wasserstrahlvakuum abkondensiert und der Rückstand *i. Vak.* fraktioniert destilliert. Man erhält **5–7** als farblose bis gelbe Flüssigkeiten in 70–80%. Ausbeute.

#### 3.5.1. [(Tetramethylcyclopentadienyl)methyl]triethoxysilan (5)

Sdp<sub>0.05</sub> 65–68°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.96, 0.97 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.17 (m, 9H, CH<sub>3</sub>);

1.64–1.93 (m, 11H, TcpC $H_2$ , vinyl.  $CH_3$  v. Tcp); 2.41– 2.68 (m, 1H, H); 3.76 (m, 6H,  $CH_2$ O). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  10.4, 10.6 (TcpCH<sub>2</sub>); 11.1, 11.3, 11.6, 11.9, 14.0, 14.2 (CH<sub>3</sub> v. Tcp); 18.1 (CH<sub>3</sub>); 50.8, 51.3 (CH–); 58.4 (CH<sub>2</sub>); 133.0, 133.1, 134.1, 136.0, 136.6, 137.2, 137.6 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  –50.7, –50.4. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 298 (29); M<sup>+</sup>–EtOH 280 (2) (EtO)<sub>3</sub>Si<sup>+</sup> 163 (100); TcpCH<sub>2</sub><sup>+</sup> 135 (85).

Anal. Gef.: C, 64.45; H, 10.23.  $C_{16}H_{30}O_3Si$  (298.5) ber.: C, 64.38; H, 10.13%.

#### 3.5.2. [2-(Tetramethylcyclopentadienyl)ethyl]triethoxysilan (6)

Sdp<sub>0.06</sub> 74–77°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.86–1.02 (m, 3H, allyl. CH<sub>3</sub> v. Tcp); 1.19 (m, 2H, CH<sub>2</sub>); 1.20 (m, 9H, CH<sub>3</sub>); 1.42 (m, 2H, TcpCH<sub>2</sub>); 1.50–1.70 (m, 9H, vinyl. CH<sub>3</sub> v. Tcp); 2.15 (m, 1H (50%), allyl. H); 3.75 (m, 6H, CH<sub>2</sub>O); 5.62–5.78 (m, 1H (50%), vinyl. H v. Tcp). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  2.3, 3.3, 4.4, 4.6 (CH<sub>2</sub>); 9.4, 10.4, 10.9, 11.5, 12.1, 12.9, 14.6, 20.9, 21.5 (CH<sub>3</sub> v. Tcp); 18.2 (CH<sub>3</sub>); 27.6, 28.7, 31.7, 34.5 (TcpCH<sub>2</sub>); 51.0, 57.0 (CH–); 55.3, 57.6 (C–); 58.1 (CH<sub>2</sub>O); 129.6, 135.1 (CH=); 132.3, 133.3, 134.4, 136.1, 137.8, 139.8, 144.5, 148.8 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  –43.6, –43.2. MS [m/e (rel.Int. %)]: M<sup>+</sup> 312 (14); M<sup>+</sup>–EtOH 297 (5); (EtO)<sub>3</sub>Si<sup>+</sup> 163 (100); TcpCH<sub>2</sub><sup>+</sup> 135 (85). Anal. Gef.: C, 65.21; H, 10.19. C<sub>17</sub>H<sub>32</sub>O<sub>3</sub>Si (312.5)

ber.: C, 65.33; H, 10.32%.

3.5.3. [3-(Tetramethylcyclopentadienyl)propyl]triethoxysilan (7)

Sdp<sub>0.02</sub> 89°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.49, (m, 2H, CH<sub>2</sub>Si); 0.60–0.81 (m, 2H, CH<sub>2</sub>); 0.84–0.97 (m, 3H, allyl. CH<sub>3</sub> v. Tcp); 1.15 (m, 9H, CH<sub>3</sub>); 1.41 (m, 2H, TcpCH<sub>2</sub>); 1.59–1.79 (m, 9H, vinyl. CH<sub>3</sub> v. Tcp); 2.25 (m, 1H (40%), allyl. H); 3.73 (m, 6H, CH<sub>2</sub>O); 5.70 (m, 1H (60%), vinyl. H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  9.5, 11.5, 12.3, 12.5, 13.8, 14.0, 21.1, 22.1 (CH<sub>3</sub> v. Tcp); 10.1, 10.5 (CH<sub>2</sub>Si); 16.8, 18.0 (CH<sub>2</sub>); 18.1 (CH<sub>3</sub>); 27.6, 28.7, 38.6, 39.9 (TcpCH<sub>2</sub>); 49.3, 51.4 (CH–); 54.5, 56.8 (C–); 58.1 (CH<sub>2</sub>O); 128.9, 135.8 (CH=); 131.5, 132.6, 133.9, 135.2, 138.0, 140.6, 144.1, 148.1 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  –44.4, –44.3. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 326 (9); M<sup>+</sup>–EtOH 252 (3); (EtO)<sub>3</sub>Si<sup>+</sup> 163 (100); TcpCH<sub>2</sub><sup>+</sup> 135 (47).

Anal. Gef.: C, 66.20; H, 10.40.  $C_{18}H_{34}O_3Si$  (326.6) ber.: C, 66.21; H, 10.50%.

#### 3.6. Allgemeine Arbeitsvorschrift: Chlor-methyl-[4-(tetramethylcyclopentadienyl)butyl]-silane (8–10)

17.6 g (100 mmol) 1-But-3-enyl-2,3,4,5-tetramethylcyclopentadien, 120 mmol Silan ( $Cl_{3-n}(Me)_nSiH$ ) und 0.1 ml einer 0.1 *N*-Lösung von H<sub>2</sub>PtCl<sub>6</sub> in 2-Propanol werden 24 h auf 50-60°C erwärmt. Nach Zugabe von Magnesiumspänen wird das überschüssige Silan *i. Vak.* entfernt und der Rückstand fraktioniert destilliert. Man erhält die Hydrosilylierungsprodukte **8–10** in 90%. Ausbeute (jeweils Gemische aus drei Isomeren).

3.6.1. Chlor-dimethyl-[4-(tetramethylcyclopentadienyl)butyl]silan (8)

Sdp<sub>0.04</sub> 80°C. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>) δ 0.18, 0.20, 0.21 (3s, 6H, CH<sub>3</sub>Si); 0.52–0.71 (m, 2H, CH<sub>2</sub>Si); 0.99, 1.01 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 5.8 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.20–1.45 (m, 4H, CH<sub>2</sub>), 1.60, 2.20 (2m, 2H, CH<sub>2</sub>Tcp); 1.71–1.83 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.30– 2.65 (m, 1H, CH). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): δ 1.6 (CH<sub>3</sub>Si); 11.2, 11.3, 11.4, 11.8, 11.9, 12.0, 14.4, 14.5 (CH<sub>3</sub> v. Tcp); 19.0, 19.1, 23.3, 23.8, 25.8, 26.2, 27.1, 27.6, 33.5, 34.2 (CH<sub>2</sub>); 49.7, 51.8, 56.4 (CH); 133.8, 134.3, 134.7, 135.2, 135.7, 137.8, 138.1, 138.2, 138.9, 142.2 (C=). <sup>29</sup>Si-NMR (C<sub>6</sub>D<sub>6</sub>): δ 31.2. MS [m/e (rel.Int. %)]: M<sup>+</sup> 270 (15); TcpCH<sub>2</sub>CH<sup>+</sup><sub>2</sub> 149 (10); TcpCH<sup>+</sup><sub>2</sub> 135 (100). Anal. Gef.: C, 66.66; H, 9.73; Cl, 13.8. C<sub>15</sub>H<sub>27</sub>ClSi (270.9) ber.: C, 66.50; H, 10.05; Cl, 13.09%.

3.6.2. Dichlor-methyl-[4-tetramethylcyclopentadienyl)butyl]silan (9)

Sdp<sub>0.06</sub> 89°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 0.71, 0.74, 0.75 (3s, 3H, CH<sub>3</sub>Si); 0.85–1.10 (m, 2H, CH<sub>2</sub>Si); 0.97, 0.98 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.31–1.54 (m, 4H, CH<sub>2</sub>); 1.65, 2.20 (2m, 2H, CH<sub>2</sub>Tcp); 1.70–1.80 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.27–2.62 (m, 1H, CH–). <sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ 5.2 (CH<sub>3</sub>Si); 11.0, 11.2, 11.6, 11.7, 11.8, 14.1, 14.2 (CH<sub>3</sub> v. Tcp); 21.6, 21.7, 22.4, 22.5, 22.9, 25.3, 25.8, 26.2, 27.2, 32.5, 33.3 (CH<sub>2</sub>); 49.4, 51.5, 55.9 (CH–); 133.4, 134.0, 134.6, 135.1, 135.6, 138.1, 138.4, 138.5, 141.9 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>) δ 32.9. MS [m/e(rel.Int. %)]: M<sup>+</sup> 290 (36); TcpCH<sub>2</sub><sup>+</sup> 149 (22); TcpCH<sub>2</sub><sup>+</sup> 135 (100).

Anal. Gef.: C, 58.87; H, 8.08; Cl, 24.0.  $C_{14}H_{24}Cl_2Si$ (291.3) ber.: C, 57.77; H, 8.30; Cl, 24.34%.

3.6.3. [4-(Tetramethylcyclopentadienyl)butyl]-trichlorsilan (10)

Sdp<sub>0.03</sub> 84°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 0.72–0.95 (m, 2H, CH<sub>2</sub>Si); 0.96, 0.98 (2d, 3H (80%),  ${}^{3}J_{HH} = 7.6$  Hz, allyl. CH<sub>3</sub> v. Tcp); 1.16–1.50 (m, 4H, CH<sub>2</sub>); 1.70, 2.10 (2m, 2H, CH<sub>2</sub>Tcp); 1.65–1.80 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.15–2.55 (m, 1H, CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>): δ 11.2, 11.3, 11.8, 11.9, 12.0, 14.3, 14.4 (CH<sub>3</sub> v. Tcp); 22.3, 22.4, 22.9, 23.3, 24.1, 25.4, 25.9, 27.2, 30.9, 32.0, 32.7 (CH<sub>2</sub>); 49.6, 51.8, 56.1 (CH–); 133.6, 134.3, 135.0, 135.1, 135.9, 138.0, 138.3, 138.4, 138.5, 141.5 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>): δ 13.3. MS [m/e (rel.Int. %)]: M<sup>+</sup> 310 (8); TcpCH<sub>2</sub>CH<sub>2</sub><sup>+</sup> 149 (9); TcpCH<sub>2</sub><sup>+</sup> 135 (100). Anal. Gef.: C, 50.51; H, 6.94; Cl, 34.2.  $C_{13}H_{21}Cl_3Si$  (311.8) ber.: C, 50.09; H, 6.79; Cl, 34.12%.

# 3.7. 1-(Prop-2-enyl)-2,3,4,5-tetramethylcyclopentadien (11)

24.5 g (153 mmol) eines Isomerengemisches aus  $Me_4HC_5CH_2CH=CH_2$  und  $Me_4H_2C_5=CH-CH=CH_2$ werden in 450 ml Et<sub>2</sub>O gelöst und tropfenweise mit 96.5 ml einer 1.59 M-Lösung (155 mmol) n-BuLi in Hexan versetzt. Nach Rühren über Nacht wird der Niederschlag abfiltriert, dreimal mit je 50 ml Et<sub>2</sub>O gewaschen und anschließend durch Zugabe von 200 ml eines Petrolether/H<sub>2</sub>O-Gemisches (5:1) hydrolysiert. Die organische Phase wird abgetrennt und über MgSO<sub>4</sub> getrocknet. Nach Entfernen des Lösungsmittels i. Vak. wird der Rückstand destilliert. Man erhält 9.64 g (39%) 11 als farblose Flüssigkeit (Gemisch aus drei Isomeren); Sdp.<sub>4</sub> 51°C. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>): δ 0.96, 0.98 (2d, 3H (80%),  ${}^{3}J_{HH} = 7.6$  Hz, allyl.  $CH_{3}$  v. Tcp); 1.70–1.80 (m, 9H (80%) + 12H (20%), vinyl.  $CH_3$  v. Tcp); 2.32-3.12 (m, 3H,  $CH_{2^{-}}$ ,  $CH_{-}$ ); 4.82–5.90 (m, 3H,  $CH=CH_{2}$ ). <sup>13</sup>C-NMR ( $C_6D_6$ ):  $\delta$  11.2, 11.7, 12.0, 14.1, 14.4 ( $CH_3$ ); 30.3, 31.4, 32.5 (CH<sub>2</sub>-); 50.2, 51.9, 55.9 (CH-); 114.3, 114.5, 115.3 (CH<sub>2</sub>=); 135.6, 137.1, 138.1 (CH=); 134.1, 134.3, 135.1, 135.9, 136.0, 136.3, 138.6, 139.4 (C=). MS  $[m/e \text{ (rel.Int. \%)}]: M^+ 162 (100); M^+-CH_3 147 (70);$ Tcp<sup>+</sup> 121 (75).

Anal. Gef.: C, 87.53; H, 10.47. C<sub>12</sub>H<sub>18</sub> (162.3) ber.: C, 88.19; H, 11.18%.

3.8. Dimethyl-[4-(tetramethylcyclopentadienyl)butyl]silanol (12) und Bis[4-(tetramethylcyclopentadienyl)butyl]tetramethyldisiloxan (13)

5.00 g (18.5 mmol) 8 werden in 50 ml  $Et_2O$  gelöst und langsam zu einer Mischung aus 6.60 g (79.0 mmol) NaHCO<sub>3</sub>, 5.00 g (280 mmol) H<sub>2</sub>O und 50 ml  $Et_2O$ getropft. Man rührt 2 h bei 20°C. Die organische Phase wird abgetrennt und über MgSO<sub>4</sub> getrocknet.

Nach Entfernen des Lösungsmittels wird der Rückstand destilliert. Man erhält 3.27 g 12 (70%) als farblose Flüssigkeit (Gemisch dreier Isomerer); Sdp.<sub>0.01</sub> 83°C.

Zur Darstellung von 13 wird obiger Rückstand mit einer Spatelspitze *p*-TosOH versetzt und bei 20°C und  $10^{-3}$  mbar 2 h gerührt. Man versetzt mit 40 ml Et<sub>2</sub>O, 20 ml H<sub>2</sub>O, einer Spatelspitze Na<sub>2</sub>CO<sub>3</sub> und rührt 1 h. Die organische Phase wird abgetrennt und über MgSO<sub>4</sub> getrocknet. Nach Entfernung des Lösungsmittels erhält man 4.28 g 13 (95%) als hellgelbes Öl (Gemisch aus drei Isomeren).

#### 3.8.1. [4-(Tetramethylcyclopentadienyl)butyl]dimethylsilanol (12)

<sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  0.08, 0.10, 0.11 (3s, 6H, CH<sub>3</sub>Si); 0.48–0.62 (m, 2H, CH<sub>2</sub>Si); 0.96, 0.98 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.29–1.48 (m, 4H, CH<sub>2</sub>); 1.60, 2.10 (2m, 2H, CH<sub>2</sub> Tcp); 1.70–1.80 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.22–2.62 (m, 1H, CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  –0.2 (CH<sub>3</sub>Si); 11.0, 11.6, 11.8, 14.0, 14.2 (CH<sub>3</sub> v. Tcp); 17.8, 23.2, 23.3, 23.6, 25.6, 27.3, 27.5, 33.5, 34.3 (CH<sub>2</sub>); 49.5, 51.5, 56.2 (CH–); 133.7, 134.1, 134.3, 135.4, 135.5, 138.0, 138.2, 142.7 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>)  $\delta$  18.0 MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 252 (35); TcpCH<sub>2</sub>CH<sub>2</sub><sup>+</sup> 149 (12); TcpCH<sub>2</sub><sup>+</sup> 135 (100); Me<sub>2</sub>SiOH<sup>+</sup> 75 (45).

Anal. Gef.: C, 71.42; H, 10.77. C<sub>15</sub>H<sub>28</sub>OSi (252.5) ber.: C, 71.36; H, 10.77 %.

3.8.2. Bis[4-(tetramethylcyclopentadienyl)butyl]tetramethyldisiloxan (13)

<sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  -0.02, 0.00, 0.02 (3s, 6H, CH<sub>3</sub>Si); 0.39-0.52 (m, 2H, CH<sub>2</sub>Si); 0.96, 0.98 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.20-1.40 (m, 4H, CH<sub>2</sub>); 1.60, 2.15 (2m, 2H, CH<sub>2</sub>Tcp); 1.70-1.80 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.23-2.62 (m, 1H CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.4 (CH<sub>3</sub>Si); 11.0, 11.1, 11.6, 11.9, 14.1, 14.3 (CH<sub>3</sub> v. Tcp); 18.3, 18.4, 23.3, 23.4, 23.8, 25.6, 26.0, 27.3, 27.6, 33.6, 34.4 (CH<sub>2</sub>); 49.4. 51.4, 56.2 (CH-); 133.7, 134.0, 134.1, 135.3, 135.5, 137.9, 138.1, 138.8, 142.8 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>)  $\delta$  7.4. MS [*m*/*e* (rel.Int.%)]: M<sup>+</sup>486 (50); TcpCH<sub>2</sub>CH<sup>+</sup><sub>2</sub> 149 (15); TcpCH<sup>+</sup><sub>2</sub> 135 (100).

Anal. Gef.: C, 73.69; H, 10.50. C<sub>30</sub>H<sub>54</sub>OSi (486.9) ber.: C, 74.00; H, 11.18%.

# 3.9. Allgemeine Arbeitsvorschrift: Ethoxy-methyl[4-(tetramethylcyclopentadienyl)butyl]silane (14–16)

100 mmol 8-10 in 150 ml Hexan werden mit einem Äquivalent (bzgl. Cl) Pyridin versetzt. Nach Zutropfen von 1.5 Äquivalenten (bzgl. Cl) EtOH wird 1 h bei 20°C gerührt. Der Niederschlag wird abfiltriert, die Lösungsmittel *i. Vak.* entfernt und der Rückstand fraktioniert destilliert. Man erhält die farblosen Ethanolyseprodukte 14-16 in 95%. Ausbeute (jeweils Gemische aus drei Isomeren).

#### 3.9.1. Dimethyl-ethoxy[4-(tetramethylcyclopentadienyl)butyl]silan (14)

Sdp<sub>0.006</sub> 58°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 0.04, 0.07, 0.08 (3s, 6H, CH<sub>3</sub>Si); 0.60 (m, 2H, CH<sub>2</sub>Si); 0.97, 0.98 (2d, 3H (80%) + 12H (20%), <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.14 (m, 3H, CH<sub>3</sub>); 1.25–1.40 (m, 4H, CH<sub>2</sub>); 1.60, 2.15 (2m, 2H, CH<sub>2</sub>Tcp); 2.25–2.60 (m, 1H, CH); 3.65 (q, 2H, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, CH<sub>2</sub>O). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  – 2.0 (CH<sub>3</sub>Si); 11.0, 11.1, 11.6, 11.8, 14.0, 14.2 (CH<sub>3</sub> v. Tcp); 16.4, 23.3, 23.4, 23.7, 25.6, 27.4, 27.5, 33.6, 34.3 (CH<sub>2</sub>); 18.6 (CH<sub>3</sub>); 49.5, 51.5, 56.3 (CH–); 58.2 (CH<sub>2</sub>O); 133.7, 134.1, 134.2, 135.4, 135.5, 138.0, 138.2, 138.8, 142.7 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>) δ 17.3. MS [m/e (rel.Int. %)]: M<sup>+</sup> 280 (35); M<sup>+</sup>-EtOH 234 (17); TcpCH<sub>2</sub>CH<sub>2</sub><sup>+</sup> 149 (15); TcpCH<sub>2</sub><sup>+</sup> 135 (100); Si(Me)<sub>2</sub>(OEt) 103 (83). Anal. Gef.: C, 72.74; H, 11.61. C<sub>17</sub>H<sub>32</sub>OSi (280.5) ber.: C, 72.79; H, 11.50%.

3.9.2. Diethoxy-methyl[4-(tetramethylcyclopentadienyl)butyl]silan (15)

 $Sdp_{0.02}$  90°C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  0.05, 0.08, 0.09 (3s, 3H, CH<sub>3</sub>Si); 0.50-0.65 (m, 2H, CH<sub>2</sub>Si); 0.96, 0.97 (2d, 3H (80%),  ${}^{3}J_{HH} = 7.6$  Hz, allyl. CH<sub>3</sub> v. Tcp); 1.20 (m, 6H, CH<sub>3</sub>); 1.30-1.40 (m, 4H, CH<sub>2</sub>); 1.60, 2.15 (2m, 2H,  $CH_2$ Tcp); 1.75–1.85 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.21-2.62 (m, 1H, CH); 3.66 (q, 4H,  ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, CH_{2}\text{O}$ ).  ${}^{13}\text{C-NMR} (\text{CDCl}_{3})$ :  $\delta - 4.9$ (CH<sub>3</sub>Si); 11.0, 11.6, 11.8, 14.0, 14.2 (CH<sub>3</sub> v. Tcp); 13.8, 22.9, 23.3, 25.5, 25.9, 27.0, 27.4, 33.4, 34.2 (CH<sub>2</sub>); 18.4  $(CH_3)$ ; 49.3, 51.4, 56.1 (CH-); 58.0 (CH<sub>2</sub>O); 133.7, 134.0, 134.2, 135.3, 135.4, 137.9, 138.1, 138.7, 142.6 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>)  $\delta$  -4.2. MS [m/e (rel.Int. %)]: M<sup>+</sup> 310 (38); M<sup>+</sup>-EtOH 264 (17); TcpCH<sub>2</sub>CH<sub>2</sub><sup>+</sup> 149 (12);  $TcpCH_2^+$  135 (100);  $Si(Me)(OEt)_2^+$  133 (65). Anal. Gef.: C, 69.30; H, 10.44. C<sub>18</sub>H<sub>34</sub>O<sub>2</sub>Si (310.6) ber.: C, 69.17; H, 11.04%.

3.9.3. [4-(Tetramethylcyclopentadienyl)butyl]triethoxysilan (16)

Sdp<sub>0.01</sub> 90°C. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>) δ 0.60–0.78 (m, 2H, CH<sub>2</sub>Si); 0.96–0.98 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.10–1.20 (m, 9H, CH<sub>3</sub>); 1.45–1.62 (m, 4H, CH<sub>2</sub>); 1.70–1.82 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.18–2.62 (m, 1H, CH); 3.70–3.84 (m, 6H, CH<sub>2</sub>O). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): δ 11.3, 11.8, 12.0, 14.3, 14.4 (CH<sub>3</sub> v. Tcp); 11.0, 11.1, 23.4, 24.0, 24.5, 26.0, 26.4, 27.3, 27.9, 33.7, 34.4 (CH<sub>2</sub>); 49.7, 51.8, 56.5 (CH–); 58.4 (CH<sub>2</sub>O); 134.0, 134.3, 134.6, 135.4, 137.8, 138.0, 139.2, 142.6 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>) δ – 45.4. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 340 (52); M<sup>+</sup>–EtOH 294 (12); Si(OEt)<sub>3</sub><sup>+</sup> 163 (32); TcpCH<sub>2</sub>CH<sub>2</sub><sup>+</sup> 149 (10); TcpCH<sub>7</sub><sup>+</sup> 135 (100).

Anal. Gef.: C, 67.00; H, 10.21.  $C_{19}H_{36}O_3Si$  (340.6) ber.: C, 67.01; H, 10.65%.

#### 3.10. [3-(1,2,3,4,5-Pentamethylcyclopenta-2,4-dienyl)propyl]trimethoxysilan (17)

5.62 g (18.0 mmol) 4 in 60 ml Hexan werden mit 4.30 g (54.4 mmol) Pyridin versetzt. Nach Zutropfen von 2.35 g (73.3 mmol) MeOH wird 0.5 h bei RT gerührt. Der Niederschlag wird abfiltriert und der Rückstand fraktioniert destilliert. Man erhält 5.10 g (95%) 17 als farblose, luft- und feuchtigkeitsempfindliche Flüssigkeit; Sdp.<sub>0.02</sub> 64°C.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.48 (m, 2H, CH<sub>2</sub>Si); 0.69 (m, 2H, CH<sub>2</sub>); 0.82, 1.63, 1.71 (3s, 15H, CH<sub>3</sub> v. Cp<sup>\*</sup>); 1.40 (m, 2H, CH<sub>2</sub>Cp<sup>\*</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  9.3, 16.6, 38.8 (CH<sub>2</sub>); 9.6, 10.9, 22.2 (CH<sub>3</sub> v. Cp<sup>\*</sup>); 55.9 (C-); 133.5, 140.0 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  -41.1. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 298 (40); Cp<sup>\*</sup>CH<sub>2</sub> 149 (100); Cp<sup>\*</sup>H<sup>+</sup> 136 (85); Si(OMe)<sub>3</sub><sup>+</sup> 121 (42).

Anal. Gef.: C, 64.42; H, 10.30.  $C_{16}H_{30}O_3Si$  (298.5) ber.: C, 64.38; H, 10.13%.

#### 3.11. Bis[4-(tetramethylcyclopentadienyl)butyl]tetramethyldisilan (18)

Zu 0.30 g (43.2 mmol) Li-Sand in 20 ml THF werden 2.71 g (10.0 mmol) 8 getropft. Man rührt 2 d bei RT, versetzt dann mit 10 ml H<sub>2</sub>O und extrahiert mit 100 ml Et<sub>2</sub>O. Nach Trocknung über MgSO<sub>4</sub> und Entfernung der Lösungsmittel *i.Vak*. verbleiben 2.35 g (99%) 12 als farbloses Öl (Rohprodukt). Eine Reinigung mittels Flashchromatographie (Laufmittel CH<sub>2</sub>Cl<sub>2</sub>) liefert 1.2 g (50%) reines 18 (Gemisch aus drei Isomeren).

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  -0.01 (m, 6H, CH<sub>3</sub>Si); 0.37-0.58 (m, 2H, CH<sub>2</sub>Si); 0.97, 0.98 (2d, 3H (80%), <sup>3</sup>J<sub>HH</sub> = 7.7 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.12–1.38 (m, 4H, CH<sub>2</sub>CH<sub>2</sub>); 1.55, 2.17 (2m, 2H, CH<sub>2</sub>–Tcp); 1.78 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 2.21–2.60 (m, 1H, CH). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  -3.8 (CH<sub>3</sub>Si); 11.1, 11.6, 11.9, 14.1, 14.3 (CH<sub>3</sub> v. Tcp); 15.2, 24.6, 24.8, 25.1, 25.6, 26.0, 27.5, 33.9, 34.7 (CH<sub>2</sub>); 49.4, 51.4, 56.2 (CH); 133.7, 134.0, 134.1, 135.3, 137.9, 138.1, 138.8, 142.7 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  -17.8 MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 470 (8); M<sup>+</sup>/2 235 (100); TcpCH<sub>2</sub><sup>+</sup> 135 (50); Me<sub>2</sub>SiH<sup>+</sup> 59 (70).

Anal. Gef.: C, 76.41; H, 11.97. C<sub>30</sub>H<sub>54</sub>Si<sub>2</sub> (470.9) ber.: C, 76.51; H, 11.56%.

# 3.12. Cp\*-funktionalisierte Kieselgele (19 und 20)

#### 3.12.1. Immobilisierung auf aktiviertem Kieselgel

4.95 g Kieselgel (100 mesh) werden 3 h auf 350°C erhitzt. Nach Abkühung auf RT werden 50 ml Hexan und 0.25 g (0.80 mmol) 4 zugesetzt. Man versetzt mit 1.05 ml H<sub>2</sub>O und rührt 2 h bei RT. Nach Filtration wird das Kieselgel 5 h mit CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Die Hexan- und die CH<sub>2</sub>Cl<sub>2</sub>-Phase werden vereinigt und zur Trockene eingeengt. Es verbleibt kein Rückstand. Das funktionalisierte Kieselgel wird 15h bei  $10^{-3}$  mbar und RT getrocknet. Man erhält 5.16 g Cp\*-funktionalisiertes Kieselgel 19 mit einem Cp\*-Gehalt von ungefähr 0.16 mmol g<sup>-1</sup>.

# 3.12.2. Immobilisierung durch Sol-Gel-Reaktion

10 ml 2.5 N  $H_3PO_4$  werden zu einer Lösung aus 11.3 g (74.2 mmol) Si(OMe)<sub>4</sub>, 0.15 g (0.50 mmol) 17 und 50 ml Aceton getropft und 3 h bei RT gerührt. Die Lösung wird über 2 d bei RT eingeengt. Der violette, glasartige Rückstand wird pulverisiert, in 100 ml  $H_2O$  suspendiert und 3 h gerührt. Nach Filtration wird das funktionalisierte Kieselgel mit  $H_2O$  neutral gewaschen und mit Aceton 5 h extrahiert.

Die Aceton-Phase wird zur Trockene eingeengt. Es verbleibt kein Rückstand. Das Cp\*-funktionalisierte Kieselgel wird 15 h bei  $10^{-3}$  mbar und RT getrocknet. Man erhält 4.60 g Cp\*-funktionalisiertes Kieselgel **20** mit einem Cp\*-Gehalt von ungefähr 0.11 mmol g<sup>-1</sup>.

# 3.13. Dicarbonyl{ $\eta^{5}$ -1-[4-(chlor-dimethylsilyl)butyl]-2,3,4,5-tetramethylcyclopentadienyl}-cobalt (21)

1.30 g (3.80 mmol) Dicobaltoctacarbonyl, 2.11 g (7.75 mmol) 8, 0.62 g (7.49 mmol) 1,3-Cyclohexadien und 25 ml CH<sub>2</sub>Cl<sub>2</sub> werden 7 h unter Rückfluß erhitzt. Man engt zur Trockene ein und versetzt mit 40 ml Hexan. Nach Filtration über Florisil und Einengen der braunen Lösung wird bei  $-80^{\circ}$ C kristallisiert. Man erhält 2.08 g 21 (70%) in  $\cdot$  Form brauner, extrem luftempfindlicher Kristalle; Schmp. 48°C.

<sup>1</sup>H-NMR ( $C_6D_6$ ):  $\delta$  0.20 (s, 6H,  $CH_3$ Si); 0.58 (m, 2H,  $CH_2$ Si); 1.31 (m, 4H,  $CH_2$ ); 1.62, 1.66 (2s, 12H,  $CH_3$  v.  $C_5Me_4$ ); 2.12 (m, 2H,  $CH_2C_5Me_4$ ). <sup>13</sup>C-NMR ( $C_6D_6$ ):  $\delta$  1.6 ( $CH_3$ Si); 10.4 ( $CH_3$  v.  $C_5Me_4$ ); 18.9, 23.4, 25.2, 35.4 ( $CH_2$ ); 96.3, 97.1, 101.9 (C=); 208.7 (CO). <sup>29</sup>Si-NMR ( $C_6D_6$ ):  $\delta$  31.2 MS [m/e (rel.Int. %)]: M<sup>+</sup> 384 (6); M<sup>+</sup>-CO 356 (21); M<sup>+</sup>-2CO-H<sub>2</sub> 326 (100); M<sup>+</sup>-Co(CO)<sub>2</sub>-HCl 234 (88). IR (Hexan):  $\nu$ (CO), 2010, 1950 cm<sup>-1</sup>.

Anal. Gef.: C, 51.71; H, 6.70; Cl, 8.5.  $C_{17}H_{27}ClCoO_2Si$  (385.85) ber.: C, 52.92; H, 7.05; Cl, 9.15%.

# 3.14. Bis{1-[4-(triethoxysilyl)butyl]-2,3,4,5-tetramethylcyclopentadienyl} eisen (22)

0.60 g (15.3 mmol) K, 4.37 g (12.8 mmol) 16 und 100 ml DME werden 48 h unter Rückfluß erhitzt. Nach Abkühlung auf RT werden 2.10 g  $FeCl_2 * 2THF$  (7.75 mmol) in 30 ml DME hinzugefügt und 8 h unter Rückfluß erhitzt. Das Lösungsmittel wird *i. Vak.* entfernt und der Rückstand mit Hexan extrahiert. Die Hexan-Phase wird *i. Vak.* zur Trockene eingeengt. Chromatographische Reinigung (Laufmittel  $CH_2Cl_2$ ) liefert neben nicht umgesetztem 16 (2.00 g) reines 22 als gelbes Öl; Ausbeute 1.41 g (55%).

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.60 (m, 2H, CH<sub>2</sub>Si); 1.21 (t, 9H, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, CH<sub>3</sub>CH<sub>2</sub>O); 1.27 (m, 2H, CH<sub>2</sub>); 1.40 (m, 2H, CH<sub>2</sub>); 1.44–1.55 (m, 12H, CH<sub>3</sub> v. C<sub>5</sub>Me<sub>4</sub>); 2.01 (m, 2H, CH<sub>2</sub>–C<sub>5</sub>Me<sub>4</sub>); 3.76 (q, 6H, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, CH<sub>3</sub>CH<sub>2</sub>O). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  9.4 (CH<sub>3</sub> v. C<sub>5</sub>Me<sub>4</sub>); 10.5 (CH<sub>2</sub>Si); 18.3 (CH<sub>3</sub>CH<sub>2</sub>O); 23.1, 25.0, 34.6 (CH<sub>2</sub>); 58.3 (CH<sub>3</sub>CH<sub>2</sub>O); 78.1, 78.7, 83.0 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  –45.4. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup> 734 (100); M<sup>+</sup>-C<sub>2</sub>H<sub>6</sub> 704 (25); Si(OEt)<sub>3</sub><sup>+</sup> 163 (15). Anal. Gef.: C, 62.20; H, 9.57. C<sub>38</sub>H<sub>70</sub>FeO<sub>6</sub>Si<sub>2</sub> (735.0) ber.: C, 62.10; H, 9.60%.

# 3.15. Darstellung von $[Cl_2PtC_5Me_4H(CH_2)_4Si(Me)_2]_2O$ (23) und $[Cl_2PtC_5Me_5(CH_2)_3Si(Me)_2]_2O$ (24)

Eine Suspension aus 0.41 g (0.70 mmol)  $[PtCl_2(Eth$  $ylen)]_2$  in 20 ml  $CH_2Cl_2$  wird tropfenweise mit einer Lösung aus 0.33 g (0.70 mmol) **13** bzw. **2** in 20 ml  $CH_2Cl_2$  versetzt. Man rührt 1 h bei 20°C, filtriert, engt die Lösung auf 10 ml ein und versetzt unter Rühren mit 30 ml  $Et_2O$ . Der ausgefallene Feststoff wird abfiltriert und *i. Vak.* getrocknet. Man erhält **23** (Gemisch dreier Isomerer) und **24** als hellgelbe Pulver. Ausbeute: 0.64 g (90%); Schmp.: 85°C (**23**), 210°C (Zers.) (**24**).

# 3.15.1. $[Cl_2PtC_5Me_4H(CH_2)_4Si(Me)_2]_2O$ (23)

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.02, 0.04, 0.05 (3s, 6H, CH<sub>3</sub>Si); 0.53 (m, 2H, CH<sub>2</sub>Si); 0.93 (d, 3H (80%) <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, allyl. CH<sub>3</sub> v. Tcp); 1.32 (m, 2H, CH<sub>2</sub>); 1.43, 2.20 (m, 9H (80%) + 12H (20%), vinyl. CH<sub>3</sub> v. Tcp); 1.52, 2.35 (m, 4H, CH<sub>2</sub>); 2.50 (m, 1H, H v. Tcp). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.4 (CH<sub>3</sub>Si); 9.8, 10.0, 12.8, 13.1, 22.1 (CH<sub>3</sub>); 26.3, 26.9, 27.1, 28.2, 29.6, 31.9, 33.0 (CH<sub>2</sub>); 53.6, 55.2, 57.7 (CH); 103.6, 108.5, 109.8, 112.2 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  7.6. <sup>195</sup>Pt-NMR (CDCl<sub>3</sub>):  $\delta$ – 3686. IR (CHCl<sub>3</sub>):  $\nu$ (Pt-Cl endständig), 355 cm<sup>-1</sup>. Anal. Gef.: C, 35.32; H, 5.36; Cl, 14.0. C<sub>30</sub>H<sub>54</sub>Cl<sub>4</sub>-OPt<sub>2</sub>Si<sub>2</sub> (1018.9) ber.: C, 35.36; H, 5.34; Cl, 13.92%.

#### 3.15.2. $[Cl_2 PtC_5 Me_5 (CH_2)_3 Si(Me)_2]_2 O$ (24)

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta - 0.01$  (s, 6H, CH<sub>3</sub>Si); 0.35 (t, 2H, <sup>3</sup>J<sub>HH</sub> = 8.0 Hz, CH<sub>2</sub>Si); 0.71 (m, 2H, CH<sub>2</sub>); 1.18 (t, 2H, <sup>3</sup>J<sub>HH</sub> = 7.0 Hz, CH<sub>2</sub>Cp<sup>\*</sup>); 1.26 (s, 6H, Cp<sup>\*</sup>); 1.70 (s, 3H, Cp<sup>\*</sup>); 2.19 (s, d, 6H, J<sub>HPt</sub> = 35 Hz, Cp<sup>\*</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.4 (CH<sub>3</sub>Si); 9.5, 11.2, 19.7 (CH<sub>3</sub> v. Cp<sup>\*</sup>); 17.7, 19.9, 43.5 (CH<sub>2</sub>); 64.0 (C-); 103.1, 107.9 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  7.6. <sup>195</sup>Pt-NMR (CDCl<sub>3</sub>):  $\delta$ - 3681.8. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup>-2PtCl<sub>2</sub>-H<sub>2</sub> 484 (30); M<sup>+</sup>-2PtCl<sub>2</sub>-Cp<sup>\*</sup>H 350 (14); M<sup>+</sup>-2PtCl<sub>2</sub>-Cp<sup>\*</sup>(CH<sub>2</sub>)<sub>3</sub> 309 (24); Cp<sup>\*</sup>(CH<sub>2</sub>)<sup>+</sup> 164 (45); Cp<sup>\*</sup>H<sup>+</sup> 136 (100); HSi(Me)<sub>2</sub>OSi(Me)<sup>+</sup> 133 (97). IR (CHCl<sub>3</sub>):  $\nu$ (Pt-Cl endständig), 355 cm<sup>-1</sup>.

Anal. Gef.: C, 35.39; H, 5.27; Cl, 13.9.  $C_{30}H_{54}$ -Cl<sub>4</sub>OPt<sub>2</sub>Si<sub>2</sub> (1018.9) ber.: C, 35.36; H, 5.34; Cl, 13.92%.

#### 3.16. Darstellung von $[Cl_2PdC_5Me_5(CH_2)_3Si(Me)_2]_2O$ (25)

Eine Suspension aus 0.46 g (1.20 mmol)  $PdCl_2(Ph-CN)_2$  in 20 ml  $CH_2Cl_2$  wird tropfenweise mit einer Lösung aus 0.30 g (0.60 mmol) 2 in 20 ml  $CH_2Cl_2$  versetzt. Man rührt 1 h bei 20°C, filtriert, engt die Lösung auf 10 ml ein und versetzt unter Rühren mit 30

ml Et<sub>2</sub>O. Der ausgefallene Feststoff wird abfiltriert und *i. Vak.* getrocknet. Man erhält **25** in Form eines orangen Pulvers. Ausbeute: 0.45 g (89%); Schmp.:  $180^{\circ}C$  (Zers.).

<sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta -0.03$  (s, 6H, CH<sub>3</sub>Si); 0.33 (t, 2H, <sup>3</sup>J<sub>HH</sub> = 7.9 Hz, CH<sub>2</sub>Si); 0.55 (m, 2H, CH<sub>2</sub>); 1.35 (m, 2H, CH<sub>2</sub>Cp<sup>\*</sup>); 1.58, 1.96, 2.24 (3s, 15H, Cp<sup>\*</sup>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  0.4 (CH<sub>3</sub>Si); 10.7, 12.8, 19.2 (CH<sub>3</sub> v. Cp<sup>\*</sup>); 17.5, 19.6, 44.3 (CH<sub>2</sub>); 64.3 (C-); 121.6, 125.2 (C=). <sup>29</sup>Si-NMR (CDCl<sub>3</sub>):  $\delta$  7.7. MS [*m*/*e* (rel.Int. %)]: M<sup>+</sup>-2PdCl<sub>2</sub>-H<sub>2</sub> 484 (27); M<sup>+</sup>-2PdCl<sub>2</sub>-Cp<sup>\*</sup>H 350 (10); M<sup>+</sup>-2PdCl<sub>2</sub>-Cp<sup>\*</sup>(CH<sub>2</sub>)<sub>3</sub> 309 (20); Cp<sup>\*</sup>(CH<sub>2</sub>)<sup>+</sup> 149 (45); Cp<sup>\*</sup>H<sup>+</sup> 136 (85); 133 HSi(Me)<sub>2</sub>-OSi(Me)<sub>2</sub><sup>+</sup> 133 (100).

Anal. Gef.: C, 42.75; H, 6.25; Cl, 16.7.  $C_{30}H_{54}Cl_4OPd_2$ -Si<sub>2</sub> (841.6) ber.: C, 42.82; H, 6.47; Cl, 16.85%.

# 3.17. Darstellung der Pt-funktionalisierten Kieselgele 26 und 27

#### 3.17.1. Aus 19

5.16 g (0.80 mmol Cp<sup>\*</sup>) **19** werden in 40 ml CH<sub>2</sub>Cl<sub>2</sub> suspendiert, mit 0.18 g (0.31 mmol) [PtCl<sub>2</sub>(Ethylen)]<sub>2</sub> versetzt und 2 h bei RT gerührt. Die anfangs gelbe Lösung entfärbt sich vollständig. Nach Filtration wird der Rückstand 8 h mit CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Die CH<sub>2</sub>Cl<sub>2</sub>-Phase wird zur Trockene eingeengt. Es verbleibt kein Rückstand. Das funktionalisierte Kieselgel wird 15 h bei 10<sup>-3</sup> mbar und RT getrocknet. Man erhält 5.33 g **26** mit einem Pt-Gehalt von ungefähr 0.12 mmol g<sup>-1</sup> (ber. aus den Einwaagen).

#### 3.17.2. Aus 20

4.60 g (0.50 mmol Cp<sup>\*</sup>) **20** werden in 40 ml CH<sub>2</sub>Cl<sub>2</sub> suspendiert, mit 0.12 g (0.20 mmol)  $[PtCl_2(Ethylen)]_2$ versetzt und 2 h bei RT gerührt. Die anfangs gelbe Lösung entfärbt sich im Gegensatz zu 3.17.1. nicht vollständig. Nach Filtration wird der Rückstand 8 h mit CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Die CH<sub>2</sub>Cl<sub>2</sub>-Phase wird zur Trockene eingeengt. Es verbleibt eine geringe Menge eines schwarzen Feststoffes (Pt). Das funktionalisierte Kieselgel wird 15 h bei 10<sup>-3</sup> mbar und RT getrocknet. Man erhält 4.69 g **27** mit einem Pt-Gehalt von ungefähr 0.07 mmol g<sup>-1</sup> (ber. aus den Einwaagen).

#### Literatur und Bemerkungen

- 1 Für eine Übersicht siehe U. Deschler, P. Panster und P. Kleinschmidt, Angew. Chem., 53 (1986) 237.
- M. Boldt, G. Gubitosa und H. Brintzinger, Ger. Offen. DE 2727245 (21.12.1978) 1; D.C. Bailey und S.H. Langer, Chem. Rev., 81 (1981) 109; P.M. Maitlis, Chem. Soc. Rev., 10 (1981) 1; D.W. Macomber, W.P. Hart und M.D. Rausch, Adv. Organomet. Chem., 21 (1982) 1; B.J. Brisdon und A.M. Watts, J. Chem. Soc., Dalton

Trans., (1985) 2191; B.L. Booth, G.C. Funne, C. Stacey und P.I.T. Tait, J. Organomet. Chem., 315 (1986) 143; U. Schubert, Physik in unserer Zeit, 18 (1987) 137; I.S. Khatib und R.V. Parish, J. Organomet. Chem., 369 (1989) 9; E. Lindner, E. Glaser, H.A. Mayer und P. Wegner, J. Organomet. Chem., 398 (1990) 325; E. Lindner, A. Bader und H.A. Mayer, Z. Anorg. Allg. Chem., 598 / 599 (1991) 235, und dort zitierte Literatur.

- 3 A.B. Fischer, J.A. Bruce, D.R. McKay, G.E. Maciel und M.S. Wrighton, *Inorg. Chem.* 21 (1982) 1766; C. Zou und M.S. Wrighton, J. Am. Chem. Soc., 112 (1990) 7578; D. Astruc, *Top. Curr. Chem.*, 160 (1991) 49; D. Astruc, New. J. Chem., 16 (1992) 305.
- 4 B. Breitscheidel, J. Zieder und U. Schubert, Chem. Mater, 3 (1991) 559.
- 5 F.J. Feher, D.A. Newmann und J.F. Walzer, J. Am. Chem. Soc., 111 (1989) 1741; F.J. Feher und D.A. Newmann, J. Am. Chem. Soc., 112 (1990) 1931; F.T. Edelmann, Angew. Chem., 104 (1992) 600.
- 6 H. Uchida, Y. Kabe, K. Yoshino, A. Kawamata, T. Tsumuraya und S. Masamune, J. Am. Chem. Soc., 112 (1990) 7077; D.A. Tomalia, A.M. Naylor und W.A. Goddard III, Angew. Chem., 102 (1990) 119; A. Morikawa, M. Kakimoto und Y. Imai, Macromolecules, 24 (1991) 3469; H.B. Mekelburger, W. Jaworek und F. Vögtle, Angew. Chem., 104 (1992) 1609.
- 7 M.G. Voronkov und V.I. Lavrent'yev, Top. Curr. Chem., 102 (1982) 199; I. Pitsch, D. Hoebbel, H. Jancke und W. Hilber, Z. Anorg. Allg. Chem., 596 (1991) 63; H. Bürgy, G. Calzaferri, D. Herren und A. Zhdanov, Chimia, 45 (1991) 3; G. Calzaferri, D. Herren und R. Imhof, Helv. Chim. Acta, 74 (1991) 1278.
- 8 U. Deschler, P. Panster, P. Kleinschmidt, S. Wolff und E.H. Tan, Ger. Offen. DE 3427922 (30.10.1986) 1.
- 9 B.L. Booth, G.C. Funne, C. Stacey und P.I.T. Tait, J. Organomet. Chem., 315 (1986) 143.
- 10 M. Moran, I. Cuadrado und J.R. Masaguer, Organometallics, 6 (1987) 2341.
- 11 P.V. Balakrishnan und P.M. Maitlis, J. Chem. Soc. A (1971) 1715.
- 12 J. Okuda und K.H. Zimmermann, J. Organomet. Chem., 344 (1988) C1; P. Jutzi, T. Heidemann, B. Neumann und H.G. Stammler, Synthesis (1992) 1096.
- 13 Zur Synthese des Isomerengemisches aus 11 und dem Cyclopenten-Derivat (H<sub>2</sub>Me<sub>4</sub>C<sub>5</sub>)=CH-CH=CH<sub>2</sub> siehe D.M. Bensley, Jr., E.A. Mintz und S.J. Sussangkarn, J. Org. Chem., 53 (1988) 4417.
- 14 Erste Hydrosilylierungsversuche gingen von dem Isomerengemisch aus 11 und dem Cyclopenten-Derivat  $(H_2Me_4C_5)=CH-CH=CH_2$  aus. Für den Fall der regioselektiven Hydrosilylierung an der Seitenkette wäre die Möglichkeit gegeben gewesen, daß nur das  $\omega$ -(tetramethylcyclopentadienyl)propyl-substituierte Hydrosilylierungsprodukt  $Me_4HC_5(CH_2)_3Si(Me)_2Cl$  gebildet worden wäre: Das intermediär zusätzlich entstandene hydrosilylierte Cyclopenten-Derivat  $H_2Me_4C_5=CH(CH_2)_2Si(Me)_2(Cl)$  hätte unter den sauren Reaktionsbedingungen zum gewünschten Produkt  $Me_4HC_5(CH_2)_3Si(Me)_2Cl$  isomerisieren können. Dies ist für ähnliche Reaktionen literaturbekannt 13.
- 15 S. Pawlenko in O. Bayer (Hrsg.), Houben-Weyl. Methoden der organischen Chemie, Bd. 13/5, Georg Thieme Verlag, Stuttgart, 1973, S. 135 und S. 150.
- 16 S. Pawlenko in O. Bayer (Hrsg.) Houben-Weyl, Methoden der Organischen Chemie, Bd. 1315, Georg Thieme Verlag, Stuttgart, 1973, S. 194.
- 17 S. Pawlenko in O. Bayer (Hrsg.), Houben-Weyl, Methoden der organischen Chemie, Bd. 13/5, Georg Thieme Verlag, Stuttgart, 1973, S. 300.
- 18 Y.I. Yermakov, B.N. Kuznetsov und V.A. Zakharov, Catalysis by

Supported Complexes, Elsevier Sci. Publ. Comp., Amsterdam, 1981; F.R. Hartley, Supported Metal Complexes, D. Reidel Publ. Comp., Dordrecht, 1985; I.S. Khatib und R.V. Parish, J. Organomet. Chem., 369 (1989) 9.

- 19 L.L. Hench und J.K. West, Chem. Rev., 90 (1990) 33; C.J. Brinker und G. Scherer, Sol-Gel-Science, the Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990; C. Egger und U. Schubert, Z. Naturforschung, B 46 (1991) 783.
- 20 L.R. Byers und L.F. Dahl, Inorg. Chem., 19 (1980) 277.
- 21 Siemens P2<sub>1</sub>-Diffraktometer, Mo-K $\alpha$ -Strahlung ( $\lambda = 0.71073$  Å), Lösung und Verfeinerung mit dem Programmsystem SHELXTL PLUS, G.M. Sheldrick, Universität Göttingen, 1988. C<sub>17</sub>H<sub>26</sub>ClCo-O<sub>2</sub>Si, triklin,  $P\overline{1}$ ; a = 8.195(5) Å, b = 9.721(5) Å, c = 13.626(8) Å,

 $\alpha = 71.05(4)^{\circ}, \beta = 77.44(5)^{\circ}, \gamma = 73.42(5)^{\circ}, V = 974.5(10) \text{ Å}^{3}, Z = 2.$  T = 177 K;  $3^{\circ} < 2\theta < 55^{\circ}$ ;  $3.97 < \omega < 29.3^{\circ} \text{ min}^{-1}$ , 4484 unabhängige Reflexe, davon 2808 beobachtete ( $F > 6.0\sigma(F)$ ), 199 verfeinerte Parameter, R = 0.081,  $R_{w} = 0.080$ ,  $w^{-1} = \sigma^{2}(F)$ . Nähere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe unter Angabe der Hinterlegungsnumer CSD 57419, der Autoren und des Zeitschriftenzitats angefordert werden.

- 22 J.W. Ryan, G.K. Menzie und J.C. Speier, J. Am. Chem. Soc., 82 (1960) 3601.
- 23 J. Chatt und M.L. Searle, Inorg. Synth., 5 (1950) 210.
- 24 J.R. Doyle, P.F. Slade und H.B. Jonassen, *Inorg. Synth.*, 6 (1960) 216.